Friday, March 19, 2010

The famous GZK paradox has been completely solved

Mechanism-Revealed Physics (33/40) ----- by Bingcheng Zhao

Completely solving the long-standing GZK paradox by discovering the mysterious source of ultrahigh-energy cosmic rays. The long-standing famous GZK paradox, one of the fundamental puzzles in physics or astrophysics, has been perplexing scientists for about four decades. The GZK paradox has been completely solved by identifying the mysterious source of ultrahigh-energy cosmic rays (P. 578 ~ 580, 5.10, Ch.5C, reference #1). Be clarified, in solving the GZK paradox, the concept and implication of black holes is based on MRBHT (= Mechanism-Revealed Black Hole Theory, P. 541 ~ 548, 5.5, Ch.5B, reference #1), rather than from current postulate-based black hole theory, i.e., mechanism-revealed black holes rather than postulate-based black holes.

What is GZK paradox? GZK limit is a theoretical upper limit on the energy of cosmic rays from distance. This limit was computed by Greisen, Zatsepin and Kuzmin in 1966, based on the interactions between the cosmic ray and the cosmic microwave background (CMB) radiation. They predicted that cosmic rays with energies over the threshold energy of 5 x10^19 eV would interact with CMB photons to produce pions. Therefore, extragalactic cosmic rays with energies greater than this threshold energy should never be observed on Earth. Nevertheless, a number of observations appear to show cosmic rays from distant (i.e., extragalactic) sources with energies above this limit. The observed existence of these particles has been widely referred to as GZK paradox or cosmic ray paradox since then (ref., the encyclopedia of physics).

The conclusion that the black holes in the Milky Way galaxy are the source of ultrahigh-energy cosmic rays observed nearby Earth completely solves the GZK paradox, because the crux or ‘culprit’ of the paradox was incapable of finding out the source of ultrahigh-energy cosmic rays observed nearby Earth within the previous paradigm (P. 575 ~ 576, 5.9.2, Ch.5C, reference #1; P. 578, 5.10.2, Ch.5C, reference #1). In other words, after discovering the source of ultrahigh-energy cosmic rays, the famous GZK paradox is completely (mechanistically thus essentially) solved. Therefore, in the GZK paradox, GZK limit is correct, whereas the so-called observed evidence like ‘a number of observations appear to show cosmic rays from distant galaxies with energies above this limit’ turns out to be merely the consequence of wrongly interpreting observational results within the previous paradigm.

The key to understanding the solving the GZK paradox: (i) considering the solving GZK paradox together with the conclusion that black holes are the source of gamma ray bursts (GRBs), and GRBs occur via the explosions of black holes (P. 567 ~ 574, 5.8, Ch.5C, reference #1) because gamma ray is one of the four common types of cosmic rays, and together with the conclusion that black holes in the Milky Way galaxy are the source of ultrahigh-energy cosmic rays observed nearby Earth (P. 574 ~ 577, 5.9, Ch.5C, reference #1). (ii) As long as you have known the greatest equation in the history of science, which is Einstein’s famous mass-energy equation (E = mc^2 or E0 = mc^2), you will easily understand of the solving the GZK paradox, because the law of object’s mass doing work (OMDW) (P. 93 ~ 109, Ch.1A, reference #1), which is the root of the solving the GZK paradox (P. 895, reference #2), has also revealed the mechanism behind the greatest equation (P. 114 ~ 118, Ch.1B, reference #1). (iii) The newly established MRBHT is the key to solving the fundamentally important problem of GZK paradox.


Reference #1: 2009, Bingcheng Zhao, From Postulate-Based Modern Physics to Mechanism-Revealed Physics [Vol. 1(1/2)], ISBN: 978-1-4357-4913-9.
Reference #2: 2009, Bingcheng Zhao, From Postulate-Based Modern Physics to Mechanism-Revealed Physics [Vol. 2(2/2)], ISBN: 978-1-4357-5033-3.

Ph.D., Bingcheng Zhao,
The author of “From Postulate-Based Modern Physics to Mechanism-Revealed Physics”
1401 NE Merman Dr. Apt. 703, Pullman, WA 99163 USA.
Email: bingcheng.zhao@gmail.com